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Extracting dynamical structure from unstable periodic orbits

Kevin T. Dolan
Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121

~Received 13 December 2000; published 19 July 2001!

The topological recurrence algorithm provides a fast and robust method for detecting the presence of
unstable periodic orbits~UPO’s! in short, noisy experimental data files. We present here a technique for
improving this method by using a matrix fitting algorithm to extract dynamical information about the system
from these UPO’s. This method greatly increases the sensitivity of the algorithm, and also provides a method
for identifying false positive results.
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I. INTRODUCTION

Identifying the presence of unstable periodic orb
~UPO’s! in experimental data has become a powerful tool
the analysis of noisy physical and biological systems@1–3#.
A simple statistical method for finding UPO’s known as t
topological recurrence method@4# has been developed fo
the analysis of noisy time series data. This method has b
demonstrated on a noisy, periodically forced Van der
oscillator@4#, as well as on biological data from the crayfis
caudal photoreceptor system@5,6#, and thermally sensitive
neurons@7,8#. The topological recurrence method works
specifying and searching for a pattern that is indicative of
encounter with a UPO. These possible encounters w
UPO’s are counted and compared with surrogate data file
order to assess the statistical probability that the numbe
encounters found could be the result of random chance.

The algorithm discussed here operates on a discrete
series, such as time intervals between the firings of a neu
@9,10#, a Poincare´ section embedding from a continuou
flow, or even discrete maps such as the He´non or logistic
map. The description of this algorithm will be limited t
period-1 fixed points, although the algorithm can be appl
to higher period orbits as well. First, the data are presente
a return map (Tn vs Tn11). This return map is a two-
dimensional projection of an embedding of the time ser
data. An example of data from the rat facial cold receptor@8#
is shown in Fig. 1.

The 45° line of periodicity shows where consecuti
points are nearly equal to each other. In the vicinity of
unstable fixed point the system can often be approximate
a two-dimensional mapping@11#. The pattern we search fo
is defined as follows: Three consecutive points approach
line of periodicity with sequentially decreasing perpendicu
distance, then three points diverge from the line of period
ity with sequentially increasing perpendicular distances. T
third point is shared, making a total of five points on t
return map, or six data points. An example of such an
counter with a UPO is shown in Fig. 2.

The number of such encounters found is counted. To
termine whether the number of encounters found is lar
than what would be expected due to chance, surrogate
files are generated and the number of encounters foun
them is also counted. The statistical significance is de
mined with the following measure,
1063-651X/2001/64~2!/026213~9!/$20.00 64 0262
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, ~1!

whereN is the number of encounters in the original data fi
N̄S is the average number of encounters found in the su
gates, andsS is the standard deviation of that average. A
suming Gaussian statistics, which should be valid for val
of N̄S greater than about 20@12#, K.2 indicates about a
95% confidence andK.3 indicates about a 99% confidenc
@13#. If shuffled surrogates are used, we can reject the
hypothesis that the data is an uncorrelated process. U
surrogates that preserve the power spectrum of the orig
data, such as the amplitude adjusted Fourier transform
~AAFT! surrogates@14#, allows the rejection of the stronge
null hypothesis that the data set being analyzed is a lin
stochastic process passed through a static nonlinear tran
mation @14,15#. Analysis of several types of colored nois
@12#, using both shuffled surrogates and AAFT surroga
has demonstrated that the number of false encounters
cally found in data sets in which no real periodic orbits a

FIG. 1. Return map of interspike time intervals from the r
facial cold receptor@8#.
©2001 The American Physical Society13-1
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present typically does not depend on the power spectrum
the data. Shuffled surrogates are thus often used for this
of analysis, but it should be noted that technically reject
of this stronger hypothesis requires that either power sp
trum preserving surrogates be used, or that the power s
trum is explicitly shown not to have an effect in that partic
lar case.

Since the pattern we have searched for is what we wo
expect to see in the presence of UPO’s, a rejection of the
hypothesis is also a very strong indication that real UP
are present in the data. In principle it is possible that ot
types of nonlinear correlations could influence the proba
ity of finding false encounters, thus allowing for the pos
bility of a positive statistic when no UPO’s are present.

At this point two relevant questions present themselv
First, how can we improve the ability of this method to d
tect UPO’s in situations where the surrogate test descr
above is inconclusive, and second, how can we assure
selves that we are seeing real UPO’s when we do fin
significantly positive statistic?

II. EXTRACTING STRUCTURE
FROM THE ENCOUNTERS

One approach to answering these questions is to l
more closely at the encounters that have been found.

TABLE I. Comparison of methods on the He´non map.

N N̄S
sS K

Standard TR method 838 299.73 13.74 39.1
Matrix fit 838 147.22 11.21 61.62

FIG. 2. A typical encounter from the data file shown in Fig.
Three points converge towards the line of periodicity~circles!, fol-
lowed by three points diverging~triangles!. The third point
is shared.
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data points that make up the individual encounters have
principle, all of the information needed to determine the
cation of the UPO, as well as the eigenvalues and eigen
tors associated with it. This information can be used to i
prove the ability of the method to detect UPO’s by rejecti
encounters that do not match certain criteria that a real U
encounter would be expected to satisfy. The distributions
these fixed points and eigenvalues can be used to esta
that the encounters found in the original data really are
counters with UPO’s and not the result of some other type
correlations.

In the vicinity of a UPO the system will often behav
approximately as a two-dimensional linear mapping@11#,

Tn115A1Tn1A2Tn211B. ~2!

The coefficientsA1 , A2, andB can be determined by doing
linear least-squares fit on the points making up all of
UPO encounters from the file. The location and eigenval
of the UPO are then given by

l15
1

2
~A11AA1

214A2!,

l25
1

2
~A12AA1

214A2!,

TF5
B

12A12A2
, ~3!

wherel1 andl2 are the eigenvalues of the mapping, andTF
is the location of the fixed point. This method has been u
in the control of chaos@11,16,17#, where data near the vicin
ity of a UPO is used to determine the location and eigenv
ues of the orbit. In this case the topological recurrence al
rithm simply provides a method for determining the data
which the fit should be applied.

This linear map fitting algorithm provides an accurate a
reliable method for determining the location and eigenval
of UPO’s, but it does so by using all of the data from eve
encounter in the file and finding the best fit possible. This
very useful in situations where the system is known to b
dynamical system with only one UPO of a given period, b

TABLE II. Comparison of methods on the Ro¨ssler system.

N N̄S
sS K

Standard TR method 419 278.45 15.15 9.28
Matrix fit 379 135.81 10.07 24.14

TABLE III. Comparison of methods on a short data file.

N N̄S
sS K

Standard TR method 68 56.05 5.51 2.17
Matrix fit 62 26.40 4.57 7.79
3-2
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FIG. 3. Distribution of fixed points and eigenvalues of the encounters from the He´non map in the chaotic regime~a!–~c!, and one of its
surrogates~d!–~f!. The analytically calculated values are shown with vertical dotted lines in~a!–~c!.
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is not very helpful in establishing whether low-dimension
dynamics are present in a data file in the first place.

One possibility for improving the statistical significanc
with which UPO’s can be detected would be to calculate
location and eigenvalues of each encounter found and
use this information to decide whether or not the encoun
represents a real UPO. A good first step is to recognize
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TABLE IV. TR Analysis of the He´non map~stable period 1!.

N N̄S
sS K

Standard TR method 419 303.43 13.24 8.73
Matrix fit 270 151.92 10.96 10.78
3-3
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FIG. 4. Distribution of fixed points and eigenvalues of the encounters from the He´non map in the stable period-1 regime~a!–~c!, and one
of its surrogates~d!–~f!.
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although the encounter implies convergence towards and
vergence from the line of periodicity, it does not guaran
that the linear fit will come up with a stable and unstab
eigenvalue. In fact, we find that approximately half of t
false encounters from surrogate data files produce either
stable or two unstable eigenvalues. These encounters cl
do not represent real UPO’s and can be rejected. We will a
reject any encounters in which the location of the fixed po
02621
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estimated by the linear fit does not lie near the points t
actually make up the encounter.

The algorithm used to do this can be summarized as
lows: First the data file is searched for sequences matc
the criteria listed in Sec. I. For each encounter, the fix
point and both eigenvalues are calculated. Recall that in
~2! there are three unknowns;A1 , A2, andB. This means that
we need three equations. Our encounter is made up of
3-4
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FIG. 5. Distribution of fixed points and eigenvalues of the encounters from the Ro¨ssler system in the chaotic regime~a!–~c!, and one of
its surrogates~d!–~f!. The analytically calculated values are shown with vertical dotted lines in~a!–~c!.
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iterations of Eq.~2!, but we only need three to solve for th
unknowns. Rather than doing a least-squares fit to determ
the unknowns from all four iterations, we choose instead
just use the last three iterations. The reason for this choic
that in practice the system will typically converge towar
the UPO very quickly, and then diverge more gradually. T
first iteration is thus often not well represented by the lo
linear fit anyway. The three equations used to perform
matrix fit are thus
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Ti 135A1Ti 121A2Ti 111B,

Ti 145A1Ti 131A2Ti 121B,

Ti 155A1Ti 141A2Ti 131B, ~4!

whereTi is the first point in the encounter. Note that the fir
transition in the encounter is fromTi 11 to Ti 12, and is not
used here. This also means that the pointTi is not used in the
3-5
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KEVIN T. DOLAN PHYSICAL REVIEW E 64 026213
fit at all. OnceA1 , A2, andB have been determined the fixe
point and eigenvalues can be found using Eq.~3!. If the
encounter has two stable eigenvalues (ul j u,1) or two un-
stable eigenvalues (ul j u.1), then we reject it. Furthermore
if the location of the fixed pointTF is too far from the point
of nearest approach (T2 ,T3) we also reject it. Specifically, if

UTF2
T21T3

2 U.sT , ~5!

wheresT is the standard deviation of the distribution of th
original time series. This is to eliminate encounters wh
some quirk of the linear fit causes the estimated fixed p
to be some very large, and meaningless number.

If real UPO’s are present in the original data, then
would expect most of the encounters to satisfy these requ
ments. For the surrogate data, however, all encounters fo
are false encounters. By reducing the number of encoun
found in the surrogate data without eliminating any real
counters from the original data, we should greatly incre
the value of theK statistic from Eq.~1!. To demonstrate this
improvement we present the noisy He´non map,

Xn115bYn2aXn
211,

Yn115Xn1ejn , ~6!

wherejn is a uniform random deviate from21 to 11, and
e is the intensity of the noise. With the parametersb50.30
anda51.2 this map exhibits chaotic behavior. A 5000 po
data file was generated withe50.01. The value of the vari
able X was recorded at each iteration, and the resulting
was analyzed using 100 shuffled surrogate files. Tab
shows the results for both the initial criteria of convergen
and divergence, as well as for the new requirements of
linear fit.

We see that although all of the encounters from the or
nal data satisfy the requirements imposed by the linear
about half of the encounters found in the surrogate files
rejected. The statisticK is therefore much higher for th
linear fit algorithm than for the original TR algorithm. Th
effect can also be easily seen when analyzing the Ro¨ssler
system@18#,

ẋ52~y1z!,

ẏ5x1ay,

ż5b1z~x2c!1A2Dj~ t !, ~7!

wherej(t) is Gaussian white noise with zero mean and u
variance. The parameterD is the amplitude of this dynamica

TABLE V. TR Analysis of the Ro¨ssler system~stable period 1!.

N N̄S
sS K

Standard TR method 466 306.75 14.36 11.0
Matrix fit 279 152.03 10.98 11.57
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noise. Fora5b50.2, c55.7 this system is chaotic. The to
pological recurrence algorithm can only operate on time
ries data, so a Poincare´ section is made by slicing the three
dimensional phase space with thex50 plane and recording
the values ofy andz every time the flow crosses this plane
the positive direction. A time series withD50.001 of 5000
points was made by recording the values of the variably
from the Poincare´ section. This file was analyzed in the sam
manner as the He´non map, see Table II.

As with the Hénon map, almost all of the encounters fro
the original data satisfy the requirements of the linear
algorithm, and more than half of the surrogate encounters
rejected. In both of these examples the statistical significa
is well above the 99% level even without the improveme
of the linear fit algorithm. In order to determine if thi
method is able to produce statistically significant results e
when the standard TR method fails, another data file fr
the Rössler system was generated with the same parame
as before, but this time with only 1000 points and mu
more noise (D50.01). As we can see in Table III, the sta
dard TR method gives a statistical significance well bel
99%, but the linear fit method easily breaks the 99% co
dence level.

III. REJECTING FALSE POSITIVE RESULTS

An important question that occurs when doing this kind
analysis is whether or not a statistically significant number
encounters in a data file indicates that a UPO is rea
present. It is possible that correlations in the data could
fluence the probability of the pattern described above occ
ring due to chance. Ideally the surrogate data that is use
the topological recurrence test should preserve any statis
properties of the original data that could affect such pro
abilities, but in practice this simply is not possible. Th
means that although a statistically significant positive res
allows us to reject the null hypothesis that the data are s
ply noise, it does not prove that a UPO is really present.

Rejection of a null hypothesis only allows us to prove th
a data file is not accurately described by a particular mo
In principle it is not possible to prove that a model is corre
nor is it necessary to do so. All that is required for a mode
be useful is that it accurately describe the observable p
erties of the data. A rejection of the null hypothesis using
TR method provides an indication that a nonlinear dynam
system with UPO’s may be an accurate model for the d
but it does not guarantee that the encounters found are f
real UPO’s, since it is possible that statistical correlations
the data could bias the results.

Fortunately the linear fit algorithm presented here a
provides a method for determining whether the encoun
found in the data represent a real UPO, or are simply
result of statistical correlations. We will demonstrate th
technique by looking at the distribution of the eigenvalu
and fixed points of the linear mapping that was fit to ea
encounter. Figure 3 shows histograms of the fixed points
eigenvalues of the encounters from the He´non map data pre-
sented in Sec. II, as well as from one of its surrogates.

It is clear from these figures that the majority of the e
3-6
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EXTRACTING DYNAMICAL STRUCTURE FROM . . . PHYSICAL REVIEW E64 026213
counters found in the data do represent the real unst
fixed point in the He´non map at the parameter values us
The actual fixed point and eigenvalues can be calculated
lytically for the Hénon map, and areXF'0.667,lS'0.178,
andlU'21.69. We see that the peaks in these distributi
correspond quite well to the actual values. In contrast,
surrogate data produce very broad distributions. The pea
the fixed point distribution lies at the mean value of t
surrogate data, and in fact the distribution of fixed poi
simply mimics that of the data itself. The distribution
stable eigenvalues is peaked at zero, but is too broad to
a reasonable estimate of an actual stable eigenvalue, an
unstable eigenvalue distribution is not only very broad,
also contains large numbers of encounters with both pos
and negative unstable eigenvalues. Even if this surrogate
had been analyzed by itself and had given a significa
positive statistic, we could not conclude that it contains r
UPO’s.

We propose the following method for quantifying ho
sharp the peaks in these distributions are, and ultima
whether the model of the data as a dynamical system w
UPO’s is a reasonable one. First we take as our estimat
the actual location and eigenvalues of the UPO to be
mode of the distributions. This is because the mean and v
ance of the distributions are usually not well defined. T
unstable eigenvalue distribution in particular exhibits
power law type of behavior for false encounters, as can
seen in Fig. 3~f!. This means that both the mean and varian
of the distribution of unstable eigenvalues~assuming that the
null hypothesis is true! would be expected to grow rapidl
with the length of the time series. Additionally, a time ser
from a dynamical system with real UPO’s would still b
expected to have some false encounters due to ran
chance. These false encounters can take on a wide ran
values of bothlU andXF . Nonparametric statistics are thu
needed for this analysis, and the mode works well as
estimator of the fixed-point location and eigenvalues as l
as the number of false encounters is small compared to
number of real UPO encounters.

The mode can usually be determined fairly accurat
from a histogram like the ones in Fig. 3, but in general a
binning artifacts can be avoided by using an inhomogene
Poisson process waiting time rate estimate@19#, as described
in @20#. If a real UPO is present, then we would expect t
majority of the encounters to have fixed-point and eig
value estimates very close to the actual values. We can th
fore quantify how reliable an estimate the mode is from
percentage of encounters whose individual estimates
within some small distance of the mode. This small dista
is selected somewhat arbitrarily, but certainly it should
smaller than the typical distances we see in surrogate d
where the encounters vary over a wide range of eigenva
and locations.

We suggest the following procedure. Let the modes of
distributions be denoted asE(XF), E(lS), andE(lU) for the
fixed-point, stable eigenvalue, and unstable eigenvalue
tributions, respectively. We now count the number of e
counters for which
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uXF2E~XF!u,DF ,

ulS2E~lS!u,DS ,

ulU2E~lU!u,DU . ~8!

The parametersDF , DS , andDU are determined as follows

DF5sX ,

DS50.3,

DU5uE~lU!u21, ~9!

wheresX
2 is the variance of the data distribution. The rati

nale behind these somewhat arbitrary choices is that t
confine the acceptable region to a very small portion of
possible range of values that a given encounter could p
duce. We will refer to the percentage of encounters t
match all three criteria from Eq.~8! asP.

Of course a significant portion of the encounters from
data set with no real UPO’s will give fixed-point and eige
value estimates that lie very close to the peaks of their
tributions, but only a very small percentage of these enco
ters will meet all three criteria simultaneously. Th
percentageP is not only an estimate of the sharpness of t
distributions, but also a measure of the correlation betw
the three estimated quantities. If the encounters represe
real UPO, we would expect that when the system conver
towards the fixed point on a trajectory very close to t
stable manifold that it would get very close to the fixed po
and diverge along a trajectory very close to the unsta
manifold. If the encounter does not represent a real UP
then we would have no such expectation. A large value oP
is thus a very strong indication that the encounters descri
real UPO. However, it must be emphasized again thatP is
not a formal confidence level, and cannot be used to reje
null hypothesis.

One type of system that is known to give false positi
results when analyzed with the TR method is a noisy sys
in which there is a stable periodic orbit with a negative F
quet multiplier @21#. A stable fixed point will produce the
same type of converging behavior when perturbed by no
that an unstable fixed point produces when the system
onto the stable manifold. This means that the first half of
pattern searched for is strongly favored when a stable fi
point is present. The second half of the pattern will th
happen due to chance with some probability. The resul
this is that the overall probability of the pattern occurrin
may be either favored or disfavored, depending primarily
the sign of the Floquet multiplier. If the pattern is disfavore
then theK statistic will be negative, an effect which has be
observed many times in stable periodic systems@4#. If the
pattern is favored, then theK statistic will be positive, giving
a false positive result. This effect has been used to formu
a technique similar to the TR method to detect the no
precursors to a bifurcation@22,23#. This effect can be easily
seen in both the He´non map and the Ro¨ssler system in their
period-1 regions when you get close to the bifurcation
3-7
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KEVIN T. DOLAN PHYSICAL REVIEW E 64 026213
period 2. This presents a real problem when analyzing no
experimental systems where it is not always easy to iden
stable fixed points.

To demonstrate how to identify false positive results li
those described above, we refer again to the He´non map, this
time with a50.2 and b50.3. For these parameters th
Hénon map has a stable fixed point. The results of anal
with the TR method are shown in Table IV.

We notice here that the fraction of encounters rejected
the matrix fit is almost as high for the original data as for t
surrogates. This type of behavior is already a good indica
that the encounters may not be with real UPO’s. Looking
the distributions of fixed points and eigenvalues in Fig
confirms this suspicion.

Note that the stable eigenvalue distribution is almost id
tical to that of the surrogates, and the unstable eigenv
distribution differs only in that there are very few encounte
with positive unstable eigenvalues. This is simply due to
strong negative correlations present in the data that are
present in the surrogate. The fixed-point distribution loo
much narrower than that of the surrogates, but that alon
not sufficient for us to claim that a dynamical system w
UPO’s is an accurate model for the data. Applying t
method described above we findP53.35, indicating that
only 3.35% of the encounters give fixed-point and eige
value estimates close to those predicted by the distribu
peaks. This is not nearly as high as for the chaotic He´non
map example in Sec. II, for which we getP580.7.

The same analysis can be applied to the Ro¨ssler system.
Figure 5 shows the distribution of fixed points and eigenv
ues for the Ro¨ssler data analyzed above, as well as one o
surrogates.

The results are qualitatively very similar to those in F
3, with very sharp peaks near the numerically determin
values ofXF'28.39, lS'22.3431027, and lU'22.40
@24#. An interesting point is that although the stable eige
value is nearly zero, it is negative, and the distribution
stable eigenvalues in Fig. 5~b! reflects this in that the distri
bution has a sharp peak at zero, but is asymmetric with
r,

m

02621
y
fy

is

y

n
t

-
ue
s
e
ot
s
is

-
n

l-
ts

.
d

-
f

l-

most no positive values at all. As with the chaotic exam
from the Hénon map, the vast majority of the encounte
found in this file have fixed-point and eigenvalue estima
very close to the peaks in the distributions (P579.8).

The Rössler system is also capable of stable periodic
havior and can give false positive results when analyzed w
the topological recurrence method. A 5000 point file w
generated with the same procedure as in Sec. II, this t
with a5b50.2, c52.5, andD50.001. The results of the
TR analysis on this file are shown in Table V.

Analysis of the distribution of fixed points and eigenva
ues givesP526.0, once again far too low to claim that a re
UPO is present.

IV. DISCUSSION

The ability of the topological recurrence method to det
UPO’s in very short, noisy data files has made it a ve
important tool in the analysis of experimental biological a
physical systems. We have shown that by rejecting enco
ters that do not provide a realistic fit to a linear mapping,
can greatly improve the sensitivity of the TR algorithm. W
have also provided a method for determining if the enco
ters found in the data represent a real UPO, or some o
type of correlation. Specifically, we have shown that th
method can distinguish between UPO’s and noisy stable
riodic orbits, which until now could not be done reliably.

The modifications to the topological recurrence meth
presented here also add very little in the way of compu
tional complexity. One of the important strengths of the T
algorithm is that it can be applied in real time to an expe
ment. The linear fit algorithm and distribution analysis pr
sented above can be applied in real time as well.
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