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Extracting dynamical structure from unstable periodic orbits
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The topological recurrence algorithm provides a fast and robust method for detecting the presence of
unstable periodic orbit§UPQ's) in short, noisy experimental data files. We present here a technique for
improving this method by using a matrix fitting algorithm to extract dynamical information about the system
from these UPQO’s. This method greatly increases the sensitivity of the algorithm, and also provides a method
for identifying false positive results.
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I. INTRODUCTION N—N.
Identifying the presence of unstable periodic orbits K= S, D

(UPQ's) in experimental data has become a powerful tool for Is

the analysis of noisy physical and biological systdths3].  \yhereN is the number of encounters in the original data file,
A simple statistical method for finding UPO’s known as the

logical hddl has b develoned f Ns is the average number of encounters found in the surro-
topological recurrence methdd] has been developed for gates, antrg is the standard deviation of that average. As-

the analysis of noisy time series data. This method has beetyming Gaussian statistics, which should be valid for values

demonstrated on a noisy, periodically forced Van der PolOf Ws greater than about 2[12], K>2 indicates about a

oscillator[4], as well as on biological data from the crayfish 95% confidence ank >3 indicates about a 99% confidence

caudal photoreceptor sysFeEﬁ,G], and thermally sensitive [13]. If shuffled surrogates are used, we can reject the null
neurons[7,8]. The topological recurrence method works by p )othesis that the data is an uncorrelated process. Using

specifying and searching for a pattern that is indicative of any,rogates that preserve the power spectrum of the original
encounter with a UPO. These possible encounters withjaia “such as the amplitude adjusted Fourier transformed
UPOQO'’s are counted and compared with surrogate data files iOAAFT) surrogate$14], allows the rejection of the stronger
order to assess the statistical probability that the number gfy| hypothesis that the data set being analyzed is a linear
encounters found could be the result of random chance. stochastic process passed through a static nonlinear transfor-
The algorithm discussed here operates on a discrete tim@ation [14,15. Analysis of several types of colored noise
series, such as time intervals between the firings of a neurdi12], using both shuffled surrogates and AAFT surrogates
[9,10], a Poincaresection embedding from a continuous has demonstrated that the number of false encounters typi-
flow, or even discrete maps such as thenéte or logistic  cally found in data sets in which no real periodic orbits are
map. The description of this algorithm will be limited to
period-1 fixed points, although the algorithm can be applied 250 ]
to higher period orbits as well. First, the data are presented a
a return map T, vs T,.1). This return map is a two-
dimensional projection of an embedding of the time series 200 ]
data. An example of data from the rat facial cold recepddr b
is shown in Fig. 1. sou a°
The 45° line of periodicity shows where consecutive 150 4 ool
points are nearly equal to each other. In the vicinity of an 2z !‘ Y,
unstable fixed point the system can often be approximated a™_
a two-dimensional mappingll]. The pattern we search for % %
is defined as follows: Three consecutive points approach thé= 100 7 e » e
line of periodicity with sequentially decreasing perpendicular ce ® a l.,'. o
distance, then three points diverge from the line of periodic- %
ity with sequentially increasing perpendicular distances. The 0 {1* e & 0‘0'.* .
third point is shared, making a total of five points on the o« * ~. P T . ks
return map, or six data points. An example of such an en- % oo
counter with a UPO is shown in Fig. 2. —
The number of such encounters found is counted. To de- 0 '
termine whether the number of encounters found is larger 0 30 100 150 200 230
than what would be expected due to chance, surrogate dat T, (ms)
files are generated and the number of encounters found in
them is also counted. The statistical significance is deter- FIG. 1. Return map of interspike time intervals from the rat
mined with the following measure, facial cold receptof8].
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250 1 TABLE Il. Comparison of methods on the Bgler system.

N NS Og K

200 1 Standard TR method 419 278.45 15.15 9.28
Matrix fit 379 135.81 10.07 24.14

150 1
5 data points that make up the individual encounters have, in

principle, all of the information needed to determine the lo-
1 cation of the UPO, as well as the eigenvalues and eigenvec-
tors associated with it. This information can be used to im-
3 prove the ability of the method to detect UPO’s by rejecting
encounters that do not match certain criteria that a real UPO
50 4 encounter would be expected to satisfy. The distributions of
these fixed points and eigenvalues can be used to establish
that the encounters found in the original data really are en-
counters with UPQO'’s and not the result of some other type of
correlations.
In the vicinity of a UPO the system will often behave
T n (ms) approximately as a two-dimensional linear mappihd],

Tn+t (ms)

100

0 50 100 150 200 250

FIG. 2. Atypical encounter from the data file shown in Fig. 1. Thi1=A T, +A,T,_,+B. (2)
Three points converge towards the line of periodicitycles, fol-

!owed by three points divergingtriangles. The third point  The coefficients; , A,, andB can be determined by doing a
is shared. linear least-squares fit on the points making up all of the

. PO encounters from the file. The location and eigenvalues
present typically does not depend on the power spectrum f the UPO are then given by

the data. Shuffled surrogates are thus often used for this type
of analysis, but it should be noted that technically rejection 1
of this stronger hypothesis requires that either power spec- ?\1=§(A1+ \/A§+4A2),
trum preserving surrogates be used, or that the power spec-

trum is explicitly shown not to have an effect in that particu-

lar case. 1 ————
Since the pattern we have searched for is what we would )‘ZZE(Al_ ArtaA,),
expect to see in the presence of UPQ’s, a rejection of the null
hypothesis is also a very strong indication that real UPQO'’s B
are present in the data. In principle it is possible that other TF:m' ©)

types of nonlinear correlations could influence the probabil-

ity of finding false encounters, thus allowing for the possi- , )
Y g g b where\; and\, are the eigenvalues of the mapping, and

bility of a positive statistic when no UPO’s are present. ; ; : . i
At this point two relevant questions present themselves'S the location of the fixed point. This method has been used

First, how can we improve the ability of this method to de- in the control of chaogl1,16,17, where data near the vicin-

tect UPO’s in situations where the surrogate test describeldy Of @ UPO is used to determine the location and eigenval-
above is inconclusive, and second, how can we assure o

Jes of the orbit. In this case the topological recurrence algo-
selves that we are seeing real UPO's when we do find 5ithm simply provides a method for determining the data to
significantly positive statistic?

which the fit should be applied.

This linear map fitting algorithm provides an accurate and
reliable method for determining the location and eigenvalues
of UPQ’s, but it does so by using all of the data from every
encounter in the file and finding the best fit possible. This is

One approach to answering these questions is to lookery useful in situations where the system is known to be a
more closely at the encounters that have been found. Thdynamical system with only one UPO of a given period, but

II. EXTRACTING STRUCTURE
FROM THE ENCOUNTERS

TABLE |I. Comparison of methods on the Rien map. TABLE Ill. Comparison of methods on a short data file.
N NS Og K N NS Og K
Standard TR method 838 299.73 13.74 39.18 Standard TR method 68 56.05 5.51 2.17
Matrix fit 838 147.22 11.21 61.62 Matrix fit 62 26.40 4.57 7.79
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FIG. 3. Distribution of fixed points and eigenvalues of the encounters from therHmap in the chaotic regin{@)—(c), and one of its
surrogategd)—(f). The analytically calculated values are shown with vertical dotted linéa)+(c).

is not very helpful in e_stabhshmg_ w_hether _Iow-d|menS|onaI TABLE IV, TR Analysis of the Haon map(stable period L
dynamics are present in a data file in the first place.

One possibility for improving the statistical significance N N, os K
with which UPQ's can be detected would be to calculate the s
location and eigenvalues of each encounter found and theBtandard TR method 419 303.43 13.24 8.73
use this information to decide whether or not the encountegiatrix fit 270 151.92 10.96 10.78

represents a real UPO. A good first step is to recognize that
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FIG. 4. Distribution of fixed points and eigenvalues of the encounters from therHmap in the stable period-1 regirf@—(c), and one
of its surrogategd)—(f).

although the encounter implies convergence towards and destimated by the linear fit does not lie near the points that
vergence from the line of periodicity, it does not guaranteeactually make up the encounter.

that the linear fit will come up with a stable and unstable The algorithm used to do this can be summarized as fol-
eigenvalue. In fact, we find that approximately half of thelows: First the data file is searched for sequences matching
false encounters from surrogate data files produce either twihe criteria listed in Sec. I. For each encounter, the fixed
stable or two unstable eigenvalues. These encounters cleaipint and both eigenvalues are calculated. Recall that in Eq.
do not represent real UPQO’s and can be rejected. We will als@®) there are three unknown&;, A,, andB. This means that
reject any encounters in which the location of the fixed pointwe need three equations. Our encounter is made up of four

026213-4



EXTRACTING DYNAMICAL STRUCTURE FROM. .. PHYSICAL REVIEW E64 026213

200 (g) i Actual Fixed Point 87 (d)
i Xg=-8.39
5__
@ 150- ®
[0
E £ 4
3 3
8 8
c 100 c 31
i ]
ks ks
S S 27
Z 5 Z
" I
0 T I T T T 0 T T T i T
12 -10 -8 -6 -4 2 -12 -10 -8 -6 -4 2
Fixed Point Fixed Point
120 (p) . Actual Stable Eigenvalue 57 (e)
Ag=-2.34x107
100+ 4
5 5
2 80 €
S 3 34
8 8
5 60 0
k] S 21 T i
;40 ;
2 2
1, |
. . %Mﬂm 1 | | . | | |
-1.0 0.5 0.0 05 1.0 1.0 0.5 0.0 0.5 1.0
Stable Eigenvalue Stable Eigenvalue
. . ®
200 (©) . Actual Unstable Eigenvalue 20
Ay =-2.40
4
» 150 S 15
£ 5
c
:
S 1004 15 10-
> °
]
Z 504 < 5 ]
I o[ulﬂd}ufﬂn,ﬂgu,umu
-20 -10 0 10 20 20 -10 0 10 20
Unstable Eigenvalue Unstable Eigenvalue

FIG. 5. Distribution of fixed points and eigenvalues of the encounters from thsl&system in the chaotic regirt@—(c), and one of
its surrogategd)—(f). The analytically calculated values are shown with vertical dotted linéa)+#{(c).

iterations of Eq(2), but we only need three to solve for the Ti3=ATi 2 +ATi, 1 +B,
unknowns. Rather than doing a least-squares fit to determine

the unknowns from all four iterations, we choose instead to Tira=AaTir3tALTi 2B,

just use the last three iterations. The reason for this choice is

that in practice the system will typically converge towards Tiis=ATii 4+ AT 3+B, (4)

the UPO very quickly, and then diverge more gradually. The
first iteration is thus often not well represented by the localwhereT; is the first point in the encounter. Note that the first

linear fit anyway. The three equations used to perform outransition in the encounter is frofy;, to T;.,, and is not
matrix fit are thus used here. This also means that the p®ins not used in the

026213-5



KEVIN T. DOLAN PHYSICAL REVIEW E 64 026213

TABLE V. TR Analysis of the Resler systentstable period L~ noise. Fora=b=0.2, c=5.7 this system is chaotic. The to-
— pological recurrence algorithm can only operate on time se-
N Ng Os K ries data, so a Poincasection is made by slicing the three-
dimensional phase space with tke 0 plane and recording
the values off andz every time the flow crosses this plane in
the positive direction. A time series with=0.001 of 5000
points was made by recording the values of the varigble
from the Poincarsection. This file was analyzed in the same
manner as the Hen map, see Table II.
. As with the Hemon map, almost all of the encounters from
encounter has two stable eigenvalugs;|(<1) or two un-  he original data satisfy the requirements of the linear fit
stable eigenvaluegX;|>1), then we reject it. Furthermore, 4150rithm, and more than half of the surrogate encounters are
if the location of the fixed poinTg is too far from the point  yejected. In both of these examples the statistical significance
of nearest approaciig, Ts) we also reject it. Specifically, if  js \ell above the 99% level even without the improvement
T.4T of the linear fit algorithm. In order to determine if this
__2 3 >0, (5) method is able to produce statistically significant results even
2 when the standard TR method fails, another data file from

. . C the Rasler system was generated with the same parameters
whereo is the standard deviation of the distribution of the as before, but this time with only 1000 points and much

O arele ShCouTles e e s D—0.01). As e can Sce n Table I, th st
q P ard TR method gives a statistical significance well below

to be some very large, and meaningless number. 99%, but the linear fit method easily breaks the 99% confi-
If real UPQO's are present in the original data, then Wedence level

would expect most of the encounters to satisfy these require-
ments. For the surrogate data, however, all encounters found

are false encounters. By reducing the number of encounters IIl. REJECTING FALSE POSITIVE RESULTS

found in the surrogate data without eliminating any real en- ] ) ) o
counters from the original data, we should greatly increase Animportant question that occurs when doing this kind of
the value of theK statistic from Eq(1). To demonstrate this analysis is whether or not a statistically significant number of

Standard TR method 466 306.75 14.36 11.09
Matrix fit 279 152.03 10.98 11.57

fit at all. OnceAq, A,, andB have been determined the fixed
point and eigenvalues can be found using E). If the

-

improvement we present the noisy mte map, encounters in a data file indicates that a UPO is really
present. It is possible that correlations in the data could in-
Xns1=bY,—aX3+1, fluence the probability of the pattern described above occur-
ring due to chance. Ideally the surrogate data that is used in
Yoi1=Xnt+ €&y, (6) the topological recurrence test should preserve any statistical

properties of the original data that could affect such prob-
whereg, is a uniform random deviate from1 to +1, and  apijlities, but in practice this simply is not possible. This
€ is the intensity of the noise. With the parametbrs0.30  means that although a statistically significant positive result
anda= 1.2 this map exhibits chaotic behavior. A 5000 point allows us to reject the null hypothesis that the data are sim-
data file was generated with=0.01. The value of the vari- p|y noise, it does not prove that a UPO is rea||y present.
able X was recorded at each iteration, and the resulting file ~Rejection of a null hypothesis only allows us to prove that
was analyzed using 100 shuffled surrogate files. Table 4 data file is not accurately described by a particular model.
shows the results for both the initial criteria of convergencen principle it is not possible to prove that a model is correct,
and divergence, as well as for the new requirements of thfor is it necessary to do so. All that is required for a model to
linear fit. be useful is that it accurately describe the observable prop-
We see that although all of the encounters from the origierties of the data. A rejection of the null hypothesis using the
nal data satisfy the requirements imposed by the linear fittR method provides an indication that a nonlinear dynamical
about half of the encounters found in the surrogate files argystem with UPO’s may be an accurate model for the data,
rejected. The statisti& is therefore much higher for the put it does not guarantee that the encounters found are from
linear fit algorithm than for the original TR algorithm. This real UPO’s, since it is possible that statistical correlations in
effect can also be easily seen when analyzing thesR0 the data could bias the results.
system([18], Fortunately the linear fit algorithm presented here also
, provides a method for determining whether the encounters
X=—=(y+2z), found in the data represent a real UPO, or are simply the
. result of statistical correlations. We will demonstrate this
y=X+ay, technique by looking at the distribution of the eigenvalues
and fixed points of the linear mapping that was fit to each
z=b+2z(x—c)+ 2D &(1), (77 encounter. Figure 3 shows histograms of the fixed points and
eigenvalues of the encounters from thende map data pre-
whereé(t) is Gaussian white noise with zero mean and unitsented in Sec. Il, as well as from one of its surrogates.
variance. The parameteris the amplitude of this dynamical It is clear from these figures that the majority of the en-
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counters found in,the data do represent the real unstable IXgp—E(Xp)|<Ag,

fixed point in the Haon map at the parameter values used.

The actual fixed point and eigenvalues can be calculated ana- IN\s—E(\g)|<Asg,

lytically for the Henon map, and ar¥~0.667,A5~0.178,

andAy~ —1.69. We see that the peaks in these distributions Nu—E\y)|<Ay. (8

correspond quite well to the actual values. In contrast, the

surrogate data produce very broad distributions. The peak ifhe parameterdg, Ag, andA are determined as follows:
the fixed point distribution lies at the mean value of the

surrogate data, and in fact the distribution of fixed points Ag=ox,

simply mimics that of the data itself. The distribution of
stable eigenvalues is peaked at zero, but is too broad to give
a reasonable estimate of an actual stable eigenvalue, and the
unstable eigenvalue distribution is not only very broad, but Ay=[EM\y)| -1, €)
also contains large numbers of encounters with both positive 2 . ) o )
and negative unstable eigenvalues. Even if this surrogate filyN€réox is the variance of the data distribution. The ratio-

had been analyzed by itself and had given a significantl);‘alp}. behriwnd these Etl)mew_hat arbitrary ChOiTIeS Is thatftr;]ey
positive statistic, we could not conclude that it contains real onnine the acceptable region to a very sma portion of the
UPO’s. possible range of values that a given encounter could pro-

. s duce. We will refer to the percentage of encounters that
We propose the following method for quantifying how match all three criteria from Eq8) asP.

sharp the peaks in these distributions are, and ultimately Of course a significant portion of the encounters from a

whethe_r the model of the datg as a dynamical SySt?m W'tla ta set with no real UPO’s will give fixed-point and eigen-
UPO’s is a reasonable one. First we take as our estimate Qb e estimates that lie very close to the peaks of their dis-
the actual location and eigenvalues of the UPO to be thgiytions, but only a very small percentage of these encoun-
mode of the distributions. This is because the mean and varfars will meet all three criteria simultaneously. The
unstable eigenvalue distribution in particular exhibits agjstributions, but also a measure of the correlation between
power law type of behavior for false encounters, as can bene three estimated quantities. If the encounters represent a
seen in Fig. &). This means that both the mean and varianceeal UPO, we would expect that when the system converges
of the distribution of unstable eigenvalu@ssuming that the towards the fixed point on a trajectory very close to the
null hypothesis is truewould be expected to grow rapidly stable manifold that it would get very close to the fixed point
with the length of the time series. Additionally, a time seriesand diverge along a trajectory very close to the unstable
from a dynamical system with real UPO’s would still be manifold. If the encounter does not represent a real UPO,
expected to have some false encounters due to randothen we would have no such expectation. A large valuP of
chance. These false encounters can take on a wide rangeisfthus a very strong indication that the encounters describe a
values of bothn; and X . Nonparametric statistics are thus real UPO. However, it must be emphasized again Ehé
needed for this analysis, and the mode works well as anot a formal confidence level, and cannot be used to reject a
estimator of the fixed-point location and eigenvalues as longull hypothesis.
as the number of false encounters is small compared to the One type of system that is known to give false positive
number of real UPO encounters. results when analyzed with the TR method is a noisy system

The mode can usually be determined fairly accuratelyin which there is a stable periodic orbit with a negative Flo-
from a histogram like the ones in Fig. 3, but in general anyquet multiplier[21]. A stable fixed point will produce the
binning artifacts can be avoided by using an inhomogeneousame type of converging behavior when perturbed by noise
Poisson process waiting time rate estinfdi®], as described that an unstable fixed point produces when the system falls
in [20]. If a real UPO is present, then we would expect theonto the stable manifold. This means that the first half of the
majority of the encounters to have fixed-point and eigenjattern searched for is strongly favored when a stable fixed
value estimates very close to the actual values. We can therpeint is present. The second half of the pattern will then
fore quantify how reliable an estimate the mode is from thehappen due to chance with some probability. The result of
percentage of encounters whose individual estimates lithis is that the overall probability of the pattern occurring
within some small distance of the mode. This small distancenay be either favored or disfavored, depending primarily on
is selected somewhat arbitrarily, but certainly it should bethe sign of the Floquet multiplier. If the pattern is disfavored,
smaller than the typical distances we see in surrogate datthen theK statistic will be negative, an effect which has been
where the encounters vary over a wide range of eigenvaluesbserved many times in stable periodic systddis If the
and locations. pattern is favored, then th€ statistic will be positive, giving

We suggest the following procedure. Let the modes of the false positive result. This effect has been used to formulate
distributions be denoted & X¢), E(\g), andE(\ ) forthe  a technique similar to the TR method to detect the noisy
fixed-point, stable eigenvalue, and unstable eigenvalue digrecursors to a bifurcatiof22,23. This effect can be easily
tributions, respectively. We now count the number of en-seen in both the Hen map and the Risler system in their
counters for which period-1 regions when you get close to the bifurcation to

AS: 03,
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period 2. This presents a real problem when analyzing noisynost no positive values at all. As with the chaotic example
experimental systems where it is not always easy to identiffrom the Heon map, the vast majority of the encounters

stable fixed points. found in this file have fixed-point and eigenvalue estimates
To demonstrate how to identify false positive results likevery close to the peaks in the distributiori3=€79.8).
those described above, we refer again to thadtemap, this The Rasler system is also capable of stable periodic be-

time with a=0.2 and b=0.3. For these parameters the havior and can give false positive results when analyzed with
Henon map has a stable fixed point. The results of analysithe topological recurrence method. A 5000 point file was
with the TR method are shown in Table IV. generated with the same procedure as in Sec. Il, this time
We notice here that the fraction of encounters rejected byith a=b=0.2, c=2.5, andD=0.001. The results of the
the matrix fit is almost as high for the original data as for theTR analysis on this file are shown in Table V.
surrogates. This type of behavior is already a good indication Analysis of the distribution of fixed points and eigenval-
that the encounters may not be with real UPO's. Looking atues givesP=26.0, once again far too low to claim that a real
the distributions of fixed points and eigenvalues in Fig. 4UPQO is present.
confirms this suspicion.
Note that the stable eigenvalue distribution is almost iden- IV. DISCUSSION

tical to that of the surrogates, and the unstable eigenvalue The ability of the tobolodical thod to detect
distribution differs only in that there are very few encounters ,e abriity of the topological recurrence method 1o detec
UPOQ'’s in very short, noisy data files has made it a very

with positive unstable eigenvalues. This is simply due to the . . i ) :
P g Py portant tool in the analysis of experimental biological and

strong negative correlations present in the data that are n ical X We h h that by reiecti
present in the surrogate. The fixed-point distribution lookgPYsIcal systems. Ve have shown that by rejecting encoun-
much narrower than that of the surrogates, but that alone irsers that do _not provide a real_|s_t|_c fit to a linear mapping, we
not sufficient for us to claim that a dynamical system with Can greatly improve the sensitivity of the TR algorithm. We
e« - have also provided a method for determining if the encoun-
UPQO’s is an accurate model for the data. Applying the .
bpyINg ters found in the data represent a real UPO, or some other

method described above we firfel=3.35, indicating that i f correlation. Specifically. we have shown that thi
only 3.35% of the encounters give fixed-point and eigen—ype ol correration. Specitically, we nave sho at this

value estimates close to those predicted by the distributioﬁ1ethOO| can distinguish between UPO's and noisy stable pe-

eaks. This is not nearlv as hiah as for the chaoticide riodic orbits, which until now could not be done reliably.
Enap e.xample in sec. Il );or whi?:h we gBt=80.7 The modifications to the topological recurrence method

The same analysis can be applied to thesker system presented here also add very little in the way of computa-

Figure 5 shows the distribution of fixed points and eigenval-tlonal complexity. One of the important strengths of the TR

ues for the Rssler data analyzed above, as well as one of itsalgonthm |s_that It can be_ applied n re_al time to an experi-
surrogates ment. The linear fit algorithm and distribution analysis pre-

The results are qualitatively very similar to those in Fig. sented above can be applied in real time as well
3, with very sharp peaks near the numerically determined
values ofXg~—8.39, A\g~—2.34x10 7, and Ay~ —2.40
[24]. An interesting point is that although the stable eigen- The author would like to thank Frank Moss, Mark Spano,
value is nearly zero, it is negative, and the distribution ofand Alexander Neiman for their discussions and insight. This
stable eigenvalues in Fig(l9 reflects this in that the distri- work was supported by the U.S Office of Naval Research,
bution has a sharp peak at zero, but is asymmetric with alPhysical Science Division.
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